国产bbaaaaa片,成年美女黄网站色视频免费,成年黄大片,а天堂中文最新一区二区三区,成人精品视频一区二区三区尤物

首頁(yè)> 外文OA文獻(xiàn) >Model-based clustering of multivariate binary data with dimension reduction
【2h】

Model-based clustering of multivariate binary data with dimension reduction

機(jī)譯:基于模型的多維二元數(shù)據(jù)聚類與維數(shù) ??減少

代理獲取
本網(wǎng)站僅為用戶提供外文OA文獻(xiàn)查詢和代理獲取服務(wù),本網(wǎng)站沒(méi)有原文。下單后我們將采用程序或人工為您竭誠(chéng)獲取高質(zhì)量的原文,但由于OA文獻(xiàn)來(lái)源多樣且變更頻繁,仍可能出現(xiàn)獲取不到、文獻(xiàn)不完整或與標(biāo)題不符等情況,如果獲取不到我們將提供退款服務(wù)。請(qǐng)知悉。

摘要

Clustering methods with dimension reduction have been receiving considerablewide interest in statistics lately and a lot of methods to simultaneouslyperform clustering and dimension reduction have been proposed. This workpresents a novel procedure for simultaneously determining the optimal clusterstructure for multivariate binary data and the subspace to represent thatcluster structure. The method is based on a finite mixture model ofmultivariate Bernoulli distributions, and each component is assumed to have alow-dimensional representation of the cluster structure. This method can beconsidered an extension of the traditional latent class analysis model.Sparsity is introduced to the loading values, which produces thelow-dimensional subspace, for enhanced interpretability and more stableextraction of the subspace. An EM-based algorithm is developed to efficientlysolve the proposed optimization problem. We demonstrate the effectiveness ofthe proposed method by applying it to a simulation study and real datasets.
機(jī)譯:近來(lái),具有降維的聚類方法在統(tǒng)計(jì)學(xué)中引起了廣泛的關(guān)注,并且提出了許多同時(shí)執(zhí)行聚類和降維的方法。這項(xiàng)工作提出了一種新穎的過(guò)程,可以同時(shí)確定多元二進(jìn)制數(shù)據(jù)的最佳聚類結(jié)構(gòu)和代表該聚類結(jié)構(gòu)的子空間。該方法基于多元伯努利分布的有限混合模型,并且假定每個(gè)組件都具有簇結(jié)構(gòu)的低維表示。該方法可以被認(rèn)為是傳統(tǒng)潛在類分析模型的擴(kuò)展。稀疏性被引入到載荷值中,產(chǎn)生低維子空間,以增強(qiáng)子空間的可解釋性和更穩(wěn)定的提取。開(kāi)發(fā)了一種基于EM的算法來(lái)有效解決所提出的優(yōu)化問(wèn)題。通過(guò)將其應(yīng)用于仿真研究和真實(shí)數(shù)據(jù)集,我們證明了該方法的有效性。

著錄項(xiàng)

  • 作者

    Yamamoto, Michio; Hayashi, Kenichi;

  • 作者單位
  • 年度 2014
  • 總頁(yè)數(shù)
  • 原文格式 PDF
  • 正文語(yǔ)種 {"code":"en","name":"English","id":9}
  • 中圖分類

相似文獻(xiàn)

  • 外文文獻(xiàn)
  • 中文文獻(xiàn)
  • 專利

客服郵箱:kefu@zhangqiaokeyan.com

京公網(wǎng)安備:11010802029741號(hào) ICP備案號(hào):京ICP備15016152號(hào)-6 六維聯(lián)合信息科技 (北京) 有限公司?版權(quán)所有
  • 客服微信

  • 服務(wù)號(hào)